The National Architectural Accrediting Board (NAAB) is the only agency recognized by registration boards in the United States to accredit professional degree programs in architecture. Because most registration boards require an applicant for licensure to hold an NAAB-accredited degree, obtaining such a degree is an essential part of gaining access to the licensed practice of architecture.

NAAB Conditions for Accreditation

2004 Edition

Academic Programs Office
College of Architecture
Texas Tech University
Box 42091
Lubbock, Texas 79409

Patti Perkins
Director of Recruitment, Advising, and Placement
806.742.3356
patricia.perkins@ttu.edu

http://www.arch.ttu.edu/admissions/

The National Architectural Accrediting Board (NAAB) is the only agency recognized by registration boards in the United States to accredit professional degree programs in architecture. Because most registration boards require an applicant for licensure to hold an NAAB-accredited degree, obtaining such a degree is an essential part of gaining access to the licensed practice of architecture.

2008 - 2010

DESIGN / BUILT
Sustainable Cabin

2008 - 2010
Architecture plays a major role in maintaining a sustainable relationship with our natural environment. The construction, occupation and decommissioning of architecture uses a majority of the electricity generated in the United States. Almost every building product consumes natural resources in their production and transportation.

Texas looks forward to an estimated $3 trillion in construction over the next 20 years. In order to conserve our natural resources and be better stewards of our environment, it will be essential that we learn how to “build smart”. We will need to experiment with new ideas, document old ideas that work and train a new generation of architects to respond to environmental concerns.

The natural resources of Texas are enormous and its building traditions are an important part of its architectural heritage. The College of Architecture is interested in exploring the ways in which these two sections of a culture intersect.

In our children’s lifetime, access to water and energy sources will be limited and more expensive, particularly in West Texas. We must take action now if we want our children to inherit a livable and prosperous environment, and this action must be in the form of finding sustainable solutions to the increasing water and energy crisis. As partners in creating our built environment, architects must develop and adopt affordable forms of architecture that incorporate and even celebrate sustainable water and energy practices. Because of the various climates and microclimates of North America, each region in the United States will have different needs and different ways to respond to the issue of sustainability. This project presents a living laboratory that focuses on a variety of sustainable solutions as experienced in West Texas.

There are a number of building materials and products, when used properly, can be components within a larger system of sustainable architectural design. These products include, but are not limited to; solar technology, compost toilets and water harvesting technology that will help future architects to make crucial design decisions and help them to envision how to retrofit existing homes with sustainable technology.

This project constructs a “Prefabricated Dwelling” as a laboratory, itself designed as a model of sustainability, which will be used to test and demonstrate sustainable architectural concepts. For example, the performance of a solar panel will be tested and measured. In that way, the Prefabricated Dwelling will produce data on sustainable components, materials, and water harvesting technology that will help future architects to make crucial design decisions and help them to envision how to retrofit existing homes with sustainable technology.

Historical precedents for this project are Henry David Thoreau’s Cabin at Walden Pond near Concord, Massachusetts and Le Corbusier’s “Cabanon” Roquebrune-Cap-Martin, in Southern France. Both projects are studies of the minimal spatial needs for living. Furthermore, they are examples of structures that successfully relate to their sites and to the environment. Both projects were built under significant budget constraints, which are seldom considered in the design studios of our architecture schools. Thoreau was particularly mindful of the cost of the shelter that he built for himself. He wrote:

“I have thus a tight shingled and plastered house, ten feet wide, fifteen long, and eight-feet posts, with a garret and a closet, a large window on each side, two trap-doors, one door at the end, and a brick fireplace opposite. The exact cost of my house paying the usual price for such materials as I used, but not counting the work, all of which was done by myself, was as follows:... and I give the details because very few are able to tell exactly what their houses cost, and fewer still, if any, the separate cost of the various materials which compose them.”

In addition to reminding us of the cost – both financial and environmental – of our marks upon the landscape, Thoreau offers the lesson of knowing the value of building something for ourselves. Design / Build requires students to learn with their hands, to learn about the strength and resistance of a material, the requirements of tectonics and structural integrity. Students at the sustainable cabin will exchange the computer and the mouse for the hammer and the nail.

The Sustainable Cabin is projected to be completed in the Spring of 2010. So far, there were two groups of students involved in Design / Build as part of their elective Product Design Workshop ARCH 5302, Second Summer semester and Fall 2008. A fourth class is planned for Spring 2010. In the future, Texas Tech students will have access to the cabin to experience the cabin and this environment and learn about it.

The Sustainable Cabin is generously supported by a Texas Tech University Research Enrichment Fund Grant; Fred Koch, The Pease River Foundation; F. Marie Hall; John Don, Dea Doors and Windows; Mike Havendt, MBCI Metal Buildings; Rex Neithach, EnvBlue, and Larry Harvey AIA, Chapman Harvey Architects.

www.arch.ttu.edu