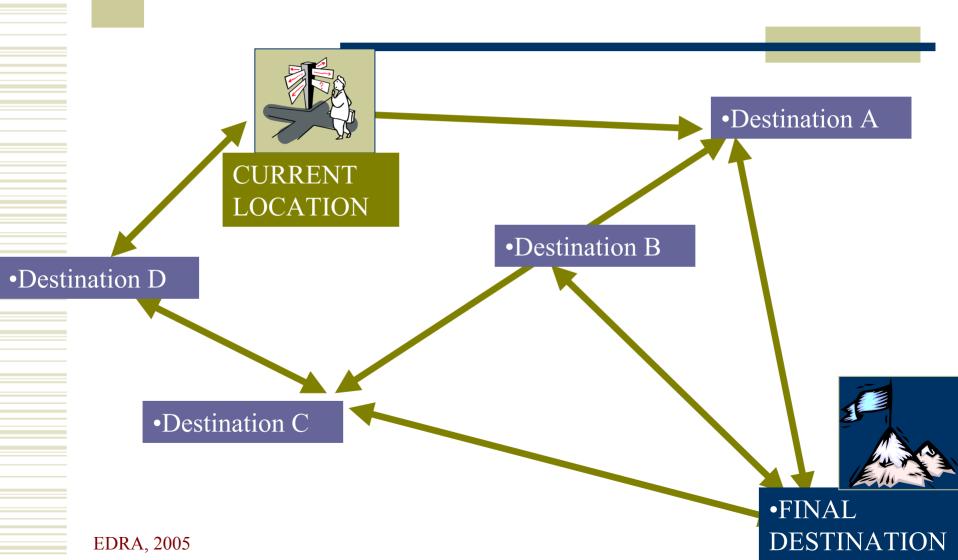
### WAY-FINDING IN LARGE SCALE VIRTUAL ENVIRONMENTS

#### Ebru Cubukcu

Dokuz Eylul University, Turkey &

Jack L. Nasar


Ohio State University, OH

April 27 - May 01, 2005

36th EDRA CONFERENCE - 2005

OLD THEORIES, NEW TECHNIQUES: MOVEMENT STUDIES IN ENVIRONMENT AND BEHAVIOR

### What is wayfinding?





### Significance of Research

•physical exhaustion
•stress
•anxiety
•frustration

•threaten sense of well being
•limit personal mobility
•avoid or leave a place

•Easy wayfinding •positive feelings desire to visit



### The Aim

Develop a comprehensive approach

•Focus more on the physical environmental factors

### Physical Environment

- •Plan Layout Complexity
- •Physical Differentiation

### Personal Characteristics

- •Gender
- •Age

### Way-finding Behavior

## The Method Software (Virtual Environments)

#### **Previous Studies**

•3D Construction Kit (Incentive

Software, Donmark Ltd)

- •RenderWare Software
- •Superscape VRT 4.00 etc.

#### Bad:

- Not available
- Not affordable
- Not realistic

#### Present Study

- •Quake III Arena
- •GTK Radiant

#### Good:

- Available
- Affordable
- •High realism





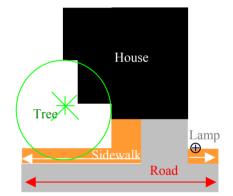




### The Method — Physical environmental characteristics

#### 18 Residential Neighborhood:

- •Same house plan
- Different
  - •Plan layout (simple X complex)
  - Vertical differentiation

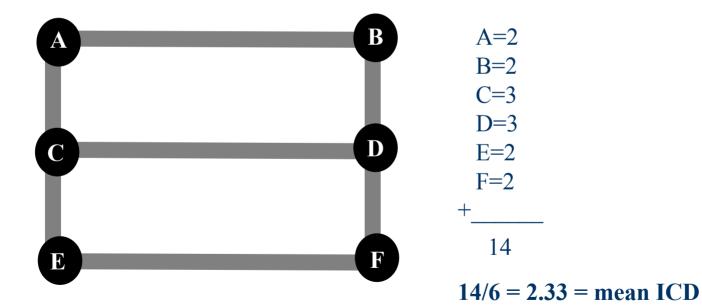

     (absent X object landmark X building landmark)
  - Horizontal differentiation

     (absent X road width variation X road pavement variation)
    - ► Level of Physical Differentiation:

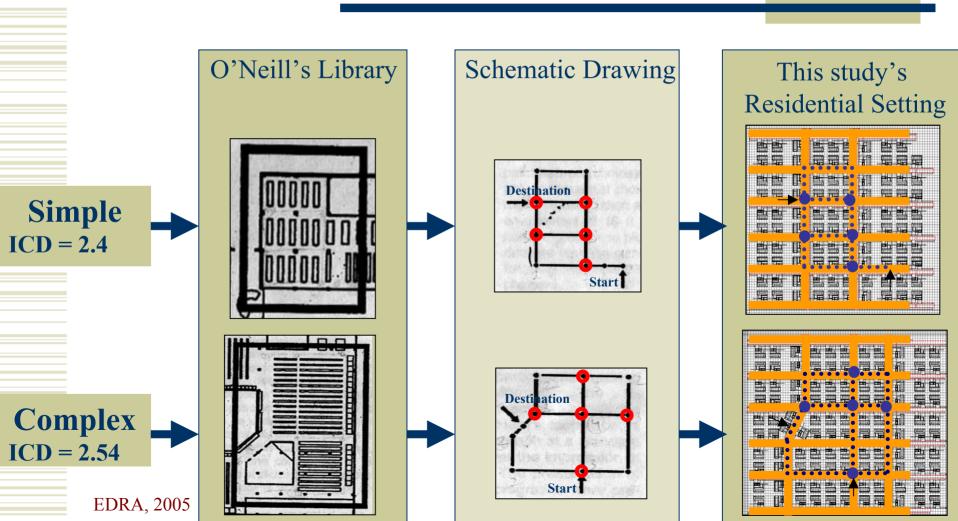
Low --- No vertical or horizontal differentiation

Moderate --- Either vertical or horizontal differentiation

High --- Both vertical or horizontal differentiation







## The Method – Plan Layout

• How to measure complexity?

With ICD (Interconnection density measure (O'Neill, 1991)



# The Method – Plan Layout



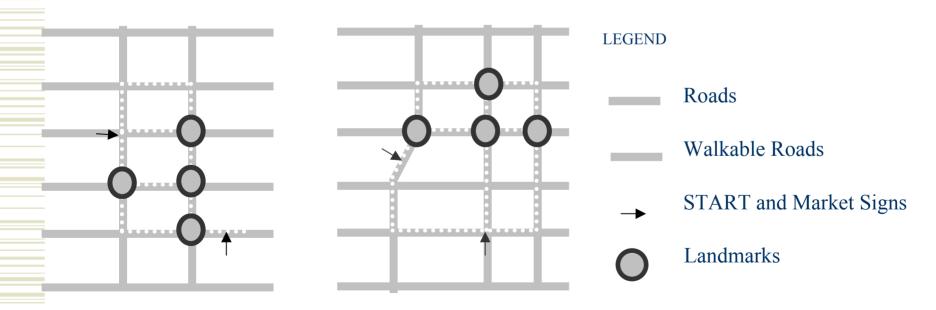
### The Method –

### Vertical Differentiation

• How to achieve vertical differentiation?

#### **Object Landmark**




#### **Building Landmark**



### The Method –

### Vertical Differentiation

• Where to locate landmarks? At decision points



# The Method – Horizontal Differentiation

• How to achieve horizontal differentiation?

#### **Road Width**

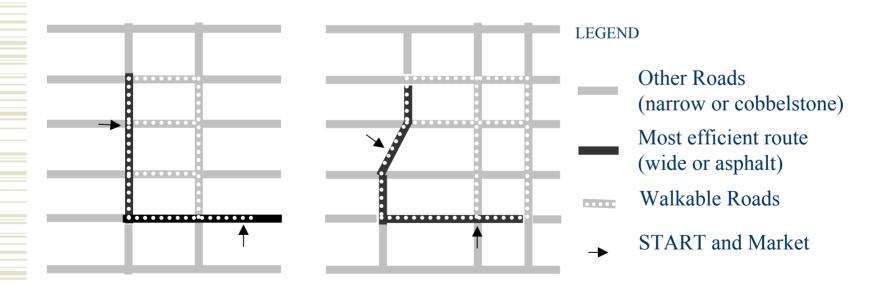






#### **Road Pavement**








# The Method – Horizontal Differentiation

• How to differentiate road variation?

Most efficient route as one type all other roads are other type



# The Method – Level of Physical Differentiation

| Level of Differentiation    | With Vertical Differentiation (Landmark) | With Horizontal Differentiation (Road Hierarchy) |
|-----------------------------|------------------------------------------|--------------------------------------------------|
| Low Differentiation         | No                                       | No                                               |
| Moderate<br>Differentiation | Yes (one of two kinds)                   | No                                               |
|                             | No                                       | Yes (one of two kinds)                           |
| High Differentiation        | Yes (one of two kinds)                   | Yes (one of two kinds)                           |

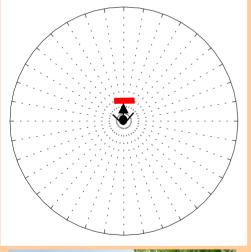
### The Method — Participant & Group Demographics

- •166 volunteers (98 males, 68 females)
- •6 volunteer dropped did not complete the survey
- •160 people randomly assigned to one of the eighteen environments and one of the four question orders.
  - •85% students & 15% staff
  - •95 male & 65 female
  - •Ages ranged 18-48
  - •Computer game playing frequency ranged from 1 (not at all) to 7 (all the time) with a mean of 3.64 (between rarely and sometimes)

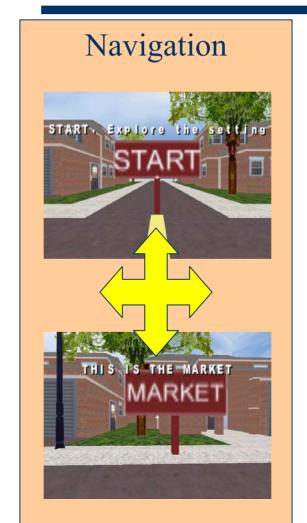
## The Method – Procedure

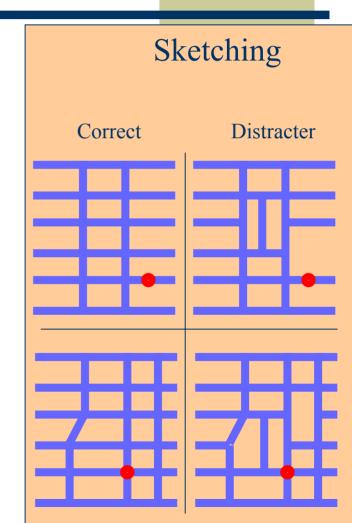
Randomly assign to one of the eighteen environments and one of the four question orders

### LEARNING PHASE


Explore the environment at their leisure up to 4 minutes

#### TEST PHASE


- •Direction estimation task
- Navigation task
- Sketching task
- Questions on
  - •gender
  - •age
  - •computer game playing frequency
  - •realism of virtual environment


## The Method – Spatial Knowledge Tasks

### Direction Estimation









### The Method – Measures

#### •Learning Phase:

- •Exploration distance
- •Exploration time
- •Exploration speed (distance covered / time)

### The Method – Measures

#### •Test Phase:

#### **•Direction Estimation Error**

estimated angle of direction – true direction

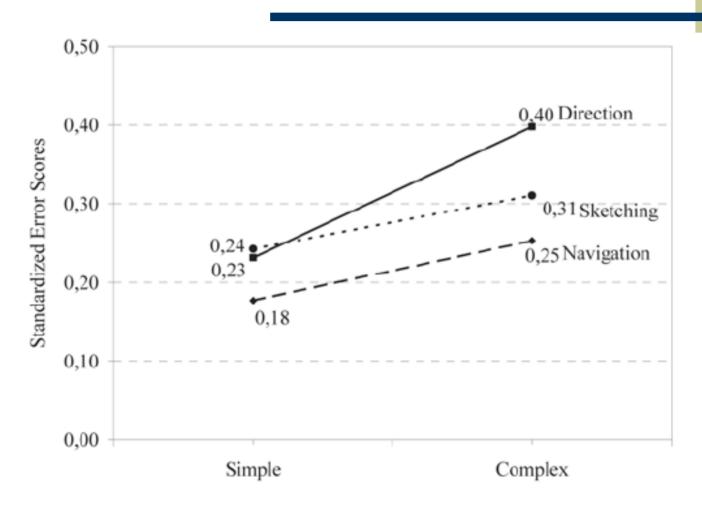
#### Navigation Error

```
speed = 1 - standardized (distance / time)
```

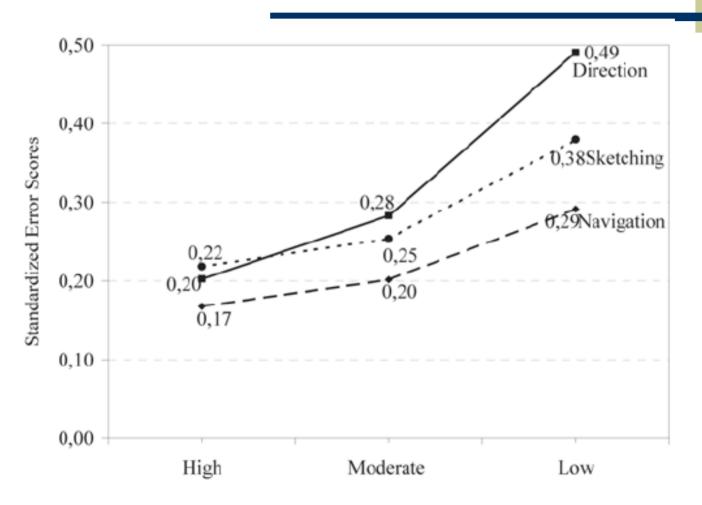
extra distance walked = (distance walked – minimum distance) / minimum distance) extra turns taken = sum of turns that lead away from MARKET sign.

#### •Sketching Error

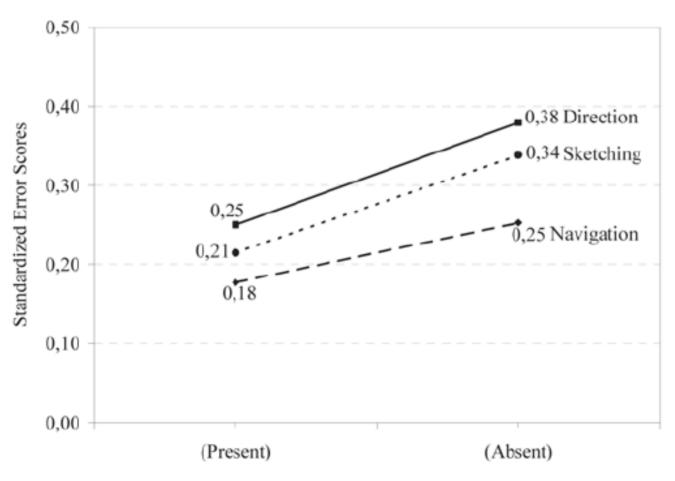
map selection : 0 = correct, 0.5 = distracter, 1 = wrong


position of market sign : 0 =correct at an intersection or on road, 1 =wrong

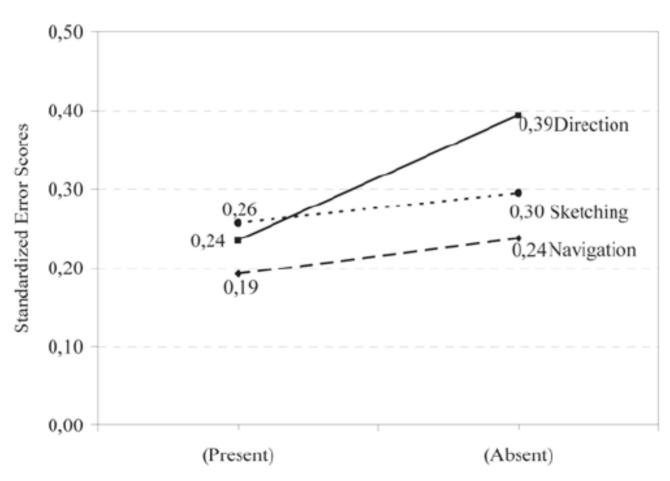
market sign distance = estimated distance (crow flies) – true distance / true distance


Route turn = turns made but not drawn + turns drawn but not made

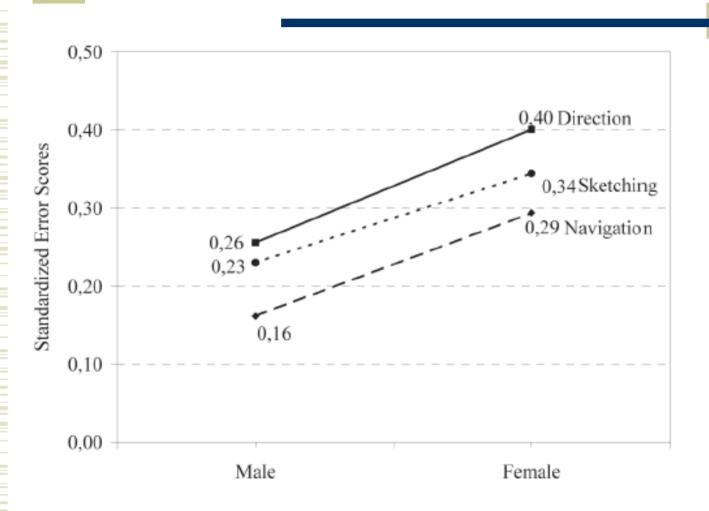
Route segment = segment walked but not drawn + segments drawn but not walked


# The Results — Plan Layout




## The Results — Physical Differentiation




### The Results — Vertical Differentiation (Landmark)



## The Results — Horizontal Differentiation (Road Hierarchy)



### The Results – Gender



# The Results — General Linear Models Direction Error Scores

| Source (n = 160)         | df | MS        | F              |  |
|--------------------------|----|-----------|----------------|--|
| Analysis 1               |    |           |                |  |
| Gender                   | 1  | 8,288.20  | 2.60           |  |
| Age (year born)          | 1  | 1,393.85  | 0.44           |  |
| Game playing             | 1  | 180.06    | 0.06           |  |
| Exploration speed        | 1  | 58.93     | 0.02           |  |
| Plan layout              | 1  | 34,498.25 | 10.81*         |  |
| Physical differentiation | 2  | 18,803.84 | 5.89*          |  |
| Analysis 2               |    |           |                |  |
| Gender                   | 1  | 9,620.64  | 3.00 <i>MS</i> |  |
| Age (year born)          | 1  | 1,593.48  | 0.50           |  |
| Game playing             | 1  | 177.14    | 0.06           |  |
| Exploration speed        | 1  | 74.14     | 0.02           |  |
| Plan layout              | 1  | 34,614.20 | 10.79*         |  |
| Landmark differentiation | 1  | 11,728.01 | 3.66 <i>MS</i> |  |
| Road differentiation     | 1  | 24,932.91 | 7.77*          |  |

NOTE: MS = .05 .

p < .01.

# The Results — General Linear Models Sketching Error Scores

| Source (n = 160)         | df | MS   | F              |  |
|--------------------------|----|------|----------------|--|
| Analysis 1               |    |      |                |  |
| Gender                   | 1  | 0.08 | 0.41           |  |
| Age (year born)          | 1  | 0.02 | 0.10           |  |
| Game playing             | 1  | 1.03 | 5.10*          |  |
| Exploration speed        | 1  | 0.69 | 3.44 <i>MS</i> |  |
| Plan layout              | 1  | 1.41 | 7.02**         |  |
| Physical differentiation | 2  | 0.69 | 3.45*          |  |
| Analysis 2               |    |      |                |  |
| Gender                   | 1  | 0.08 | 0.38           |  |
| Age (year born)          | 1  | 0.04 | 0.18           |  |
| Game playing             | 1  | 1.04 | 5.24*          |  |
| Exploration speed        | 1  | 0.63 | 3.18 <i>MS</i> |  |
| Plan layout              | 1  | 1.39 | 6.99**         |  |
| Landmark differentiation | 1  | 1.66 | 8.34**         |  |
| Road differentiation     | 1  | 0.07 | 0.35           |  |

NOTE: MS = .05 .

<sup>\*</sup>p < .05. \*\*p < .01.

# The Results — General Linear Models Navigation Error Scores

| Source (n = 157)         | df | MS   | F              |  |
|--------------------------|----|------|----------------|--|
| Analysis 1               |    |      |                |  |
| Gender                   | 1  | 0.42 | 2.78 <i>MS</i> |  |
| Age (year born)          | 1  | 0.75 | 4.93*          |  |
| Game playing             | 1  | 0.32 | 2.13           |  |
| Exploration speed        | 1  | 1.82 | 11.97**        |  |
| Plan layout              | 1  | 2.10 | 13.83**        |  |
| Physical differentiation | 2  | 0.16 | 1.04           |  |
| Analysis 2               |    |      |                |  |
| Gender                   | 1  | 0.43 | 2.85 <i>MS</i> |  |
| Age (year born)          | 1  | 0.76 | 5.01*          |  |
| Game playing             | 1  | 0.32 | 2.13           |  |
| Exploration speed        | 1  | 1.80 | 11.81**        |  |
| Plan layout              | 1  | 2.09 | 13.75**        |  |
| Landmark differentiation | 1  | 0.21 | 1.37           |  |
| Road differentiation     | 1  | 0.07 | 0.49           |  |

NOTE: MS = .05

p < .05. p < .01.

### Conclusion & Future Research

#### Conclusions

- Physical differentiation and Simple layouts enhance people's survey spatial knowledge.
- The effect sizes for personal factors were small compared to physical environmental factors

#### Future Research

- Different population (children, eledrely, Alzheimer patients)
- Different settings (airport, hospitals, collages)

### Thank you!